Application Guide

HPM1 Heat Pump Master Controller

Self-Contained Interoperable Controller Model UCP-1

by Taco Electronic Solutions

Plant ID: 001-4066

Table of Contents

HPM1 3 Overview 3 Features 3
Purpose of This Guide 4
Representations and Warranties 4
Applicable Documentation4Installation Instructions5Installation Precautions5General5Static Electricity5FCC Compliance5Equipment Location5Selecting a Power Source6
Installation
Wiring Information
HPM1 2-Tank System Setup 11
HPM1 1-Tank System Setup 18
Associating the HPM1 to Other iWorx® Modules on the Net work
Specifications25Electrical Inputs25Electrical Outputs25Power25Recommended Sensor Wire25Recommended LON Bus FTT-10A Network Wire25Mechanical25

Application Description	26
Sequence of Operation Communication with Associated Zone Controllers Operational Mode Overriding the Operational Mode Occupancy Mode Supplemental Heating Emergency Heating Setpoint Calculations Heating Sequence Cooling Sequence Lead/Lag of Heat Pump Stages HPM1 and Associated Controller Communications HPM and GHP Communications Runtime Accumulations Heat Pump Power Consumption	32 35 35 35 35 35 36 36 37 38 39 39
Controller Identification Network Inputs Inputs Outputs Configuration Alarms	39 41 41 42
Troubleshooting Diagnostic LEDs Troubleshooting Tips	48

EFFECTIVE: June 5, 2014

iWorx® HPM1

THIS PAGE LEFT BLANK INTENTIONALLY

HPM1

The HPM1 is a self-contained microprocessor-based controller for liquid-to-liquid heat pumps. Applications include two pipe single tank, two pipe two tank, and four pipe two tank hydronic HVAC systems. The HPM1 communicates with multiple zone controller units to identify heat or cool demands. In response, it energizes up to three heat pump compressor stages and a single stage of supplemental heat. The HPM1 may communicate with a GHP ground source flow controller to deliver ground temperature liquid as efficiently as possible.

Overview

The iWorx® HPM1 Heat Pump Master controller is a stand-alone microprocessor based controller for water to water heat pumps. The application includes water to water heat pumps (with reversing valve), a geothermal loop controller and a variety of hydronic zone controllers.

The HPM1 determines demand for hydronic heating and cooling via communication over a LON network with associated iWorx® zone controllers (like the BZU, DXU and FCU, etc). Digital inputs are provided to monitor Equipment Status (pump proof), High Pressure, Low Pressure, Heating Demand, and Cooling Demand. Analog inputs are provided for the Geothermal Loop Temperature, Load Loop Temperature, Heating and/or Cooling Tank Temperatures and Heat Pump Power Consumption.

The HPM1 incorporates digital outputs in the form of Triacs for up to three Heat Pump Stages, Emergency Heat (such as a fossil fuel boiler or resistive heating element), a Reversing Valve, and Circulator Pumps. An analog output is also provided to control a Modulating Heat Pump.

The controller is based on LONWORKS[®] networking technology. The controller can be networked to a higher-level control system for monitoring and control applications.

Features

• Two Stage (4 or 2 pipe systems with 2 tanks), Three Stage (2 pipe, 1 tank systems) or Modulating Heat Pump Control

- Demand Aggregation from Hydronic Controllers over a LON network
- · Communication with Ground Source Pump Controller (GPH1) over a LON network
- Configurable for 4 or 2 pipe systems with 2 tanks, or 2 pipe systems with 1 tank
- Automatic or Manual heat/cool changeover
- Emergency Heating Output
- · Configurable heating/cooling medium setpoints
- · Automatic and Configurable Reversing valve control
- Equipment status input for safety interlocks or main plant synchronization
- Analog input to monitor Heat Pump power consumption
- · LONWORKS interface to building automation systems and host products
- Automatic configuration with the LCI2
- Alarm/Event Reporting

PURPOSE OF THIS GUIDE

The *iWorx*® *HPM1* Application Guide provides application information for the HPM1 Controller.

The reader should understand basic HVAC concepts, intelligent environmental control automation, and basic LON-WORKS networking and communications. This application manual is written for:

- · Users who engineer control logic
- · Users who set up hardware configuration
- · Users who change hardware or control logic
- · Technicians and field engineers

REPRESENTATIONS AND WARRANTIES

This Document is subject to change from time to time at the sole discretion of Taco Electronic Solutions, Inc. All updates to the Document are available at www.taco-hvac.com. When installing this product, it is the reader's responsibility to ensure that the latest version of the Document is being used.

iWorx® products shall only be used for the applications identified in the product specifications and for no other purposes. For example, iWorx® products are not intended for use to support fire suppression systems, life support systems, critical care applications, commercial aviation, nuclear facilities or any other applications where product failure could lead to injury to person, loss of life, or catastrophic property damage and should not be used for such purposes.

Taco Electronic Solutions, Inc. will not be responsible for any product or part not installed or operated in conformity with the Document and instructions or which has been subject to accident, disaster, neglect, misuse, misapplication, inadequate operating environment, repair, attempted repair, modification or alteration, or other abuse. For further information, please refer to the last page of this Document for the company's Limited Warranty Statement, which is also issued with the product or available at www.taco-hvac.com.

APPLICABLE DOCUMENTATION

See the table below for additional documentation that may be applicable to this controller.

Description	Audience	Purpose
<i>iWorx</i> ® <i>LCI Application Guide</i> , Document No. 505-002	 Application Engineers Installers Service Personnel Start-up Technicians End user 	Provides instructions for setting up and using the iWorx® Local Control Interface.
http://www.iWorxWizard.com	 Application Engineers Wholesalers Contractors 	An on-line configuration and submittal package generator based on user input. Automatically generates bill of materials, sequence of opera- tions, flow diagrams, wiring diagrams, points and specifications.
Additional Documentation		<i>ceiver User's Guide,</i> published by Echelon Corpo- nstructions for the FTT-10A Free Topology Trans- ort/documentation/manuals/transceivers.

INSTALLATION INSTRUCTIONS

Installation Precautions

General

CAUTION: This symbol is intended to alert the user to the presence of important installation and maintenance (servicing) instructions in the literature accompanying the equipment.

CAUTION: Risk of explosion if battery is replaced by an incorrect type. Contains lithium type battery; dispose of properly.

WARNING: Electrical shock hazard. Disconnect **ALL** power sources when installing or servicing this equipment to prevent electrical shock or equipment damage.

Make all wiring connections in accordance with these instructions and in accordance with pertinent national and local electrical codes. Use only copper conductors that are suitable for 167 °F (75 °C).

Static Electricity

Static charges produce voltages that can damage this equipment. Follow these static electricity precautions when handling this equipment.

- Work in a static free area.
- Touch a known, securely grounded object to discharge any charge you may have accumulated.
- Use a wrist strap when handling printed circuit boards. The strap must be secured to earth ground.

FCC Compliance

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference. This equipment can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and the receiver.
- Connect the equipment to a power source different from that to which the receiver is connected.
- Consult the equipment supplier or an experienced radio/TV technician for help.

You are cautioned that any changes or modifications to this equipment not expressly approved in these instructions could void your authority to operate this equipment in the United States.

Equipment Location

Abide by all warnings regarding equipment location provided in this document. This equipment is suitable for indoor use only. Preferably, or as required by National Electrical Code, the unit is intended to be installed within an electrical control enclosure. Operate where ambient temperatures do not exceed 140 °F (60 °C) or fall below 32 °F (0 °C) and relative humidity does not exceed 90%, non-condensing.

If the equipment is to be installed outdoors, it must be contained within a protective enclosure that maintains internal temperature and humidity within the ranges specified for this equipment.

The equipment must be installed within 500 feet of all input peripherals (smoke detectors, sensors, etc.) that are connected to the equipment.

Avoid locations where corrosive fumes, excessive moisture, vibration or explosive vapors are present.

Avoid electrical noise interference. Do not install near large contactors, electrical machinery, or welding equipment.

Selecting a Power Source

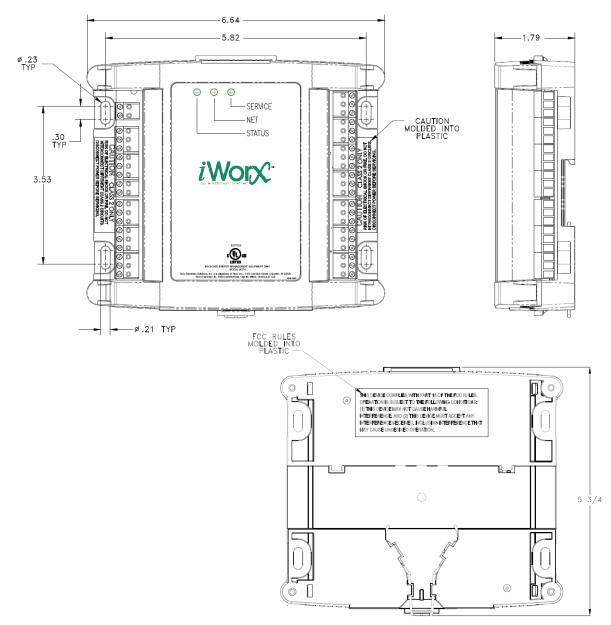
This equipment requires a UL recognized Class 2 external power source (not supplied) to operate. The controller power input requires a voltage of 24 Volts AC.

To calculate power source current requirements, add the power consumption of all peripheral devices to that of the controller.

The controller and sensor power supplies can use the same power source. If both are using the same power source, the loads must have EMF protection. This protection can be integral to the load, or installed in the 24 VAC wiring across the load's coil.

To provide necessary RFI and transient protection, the controller's ground (GND) pin (T40) must be connected to earth ground or the earth ground of the packaged unit's enclosure ground. Failure to properly ground the controller may cause it to exceed FCC limits. Excessive noise could also produce inaccurate sensor data. The power source must be capable of operating with this connection to ground.

Installation



Warning: Electrical shock hazard. To prevent electrical shock or equipment damage, disconnect **ALL** power sources to controllers and loads before installing or servicing this equipment or modifying any wiring.

Mounting the Device

- 1. Select a mounting location. Enclosure mounting is recommended.
- 2. Hold the controller on the panel you wish to mount it on. With a marker or pencil mark the mounting locations on the panel.
- 3. Using a small drill bit pre-drill the mounting holes.
- 4. Using two #6 pan head screws, mount the controller to the panel.
- 5. Wire the controller.

Figure 1: Mounting Dimensions

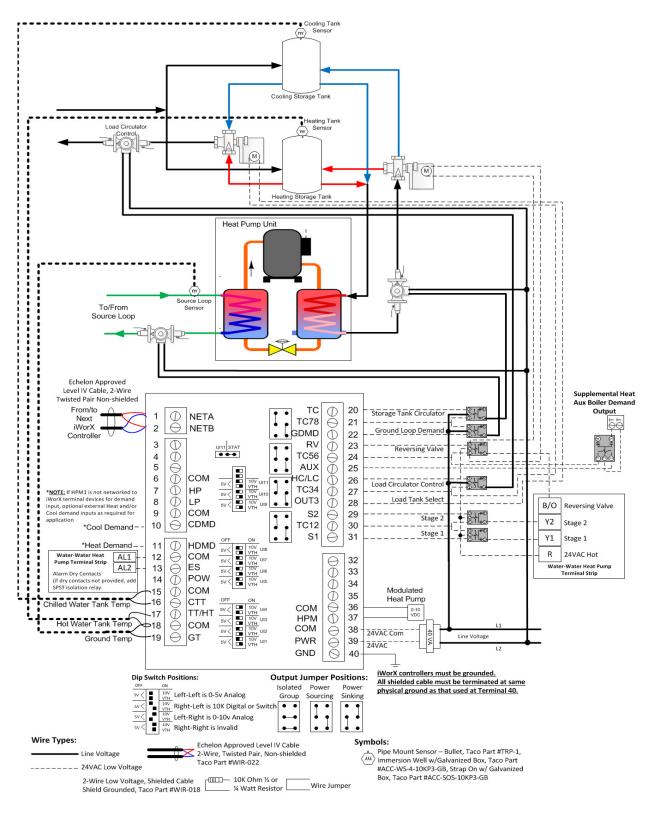
Grounding the Device

The ground terminal (T40) must be securely connected to earth ground. Failure to properly ground this equipment will result in improper operation. Improper grounding may also increase the risk of electrical shock and may increase the possibility of interference with radio/TV reception.

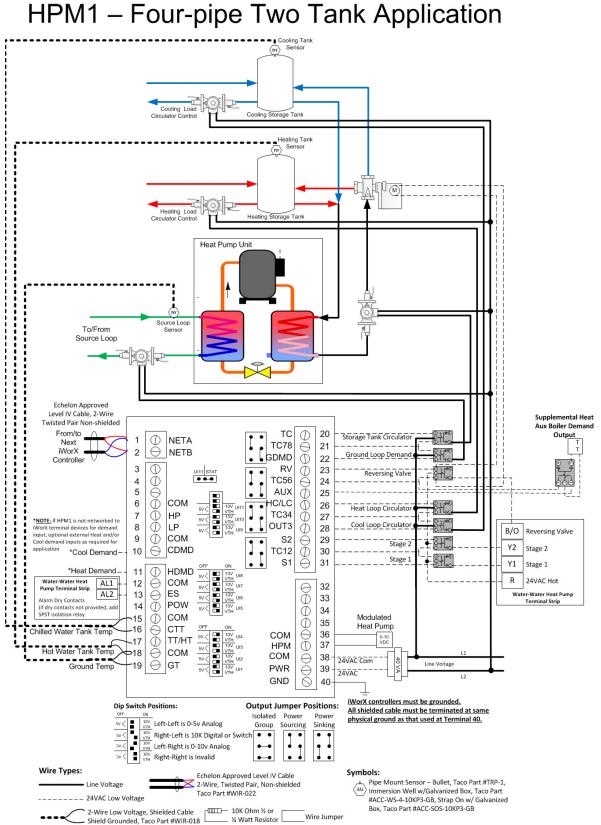
For best performance, connect the power supply common terminal (T38) to the same external point as the ground terminal (T40).

Power

Requires: 24VAC (20VAC to 28VAC), requires an external Class 2 supply


Consumes: 7.2W with no external loads, maximum limited by the Class 2 supply rating

WIRING INFORMATION



WARNING: Disconnect **ALL** power sources when installing or servicing this equipment to prevent electrical shock or equipment damage.

Example wiring diagrams are shown on the following pages.

HPM1 – Two-pipe Two Tank Application

HPM1 2-TANK SYSTEM SETUP

2-pipe, 2-tank or 4-pipe, 2-tank system Controls up to:

- 1 ea. 2-Stage Water-to-Water Heat Pump,
- 2 ea. 1-Stage Water-to-Water Heat Pumps or 1 ea.
- 0-10VDC Modulating Water-to-Water Heat Pump and 1 ea. Auxiliary Boiler

Sensors Required: Hot Water Tank Temp, Chilled Water Tank Temp, Ground Loop Water Temp

Setup Instructions

1. Press **Controllers** from main screen.

LC12	14:57	PREV	номе
Controllers	LZones	Remote LCIs	Alarms (None)
Schedules	Groups	Holidays	Utilities
Data Logs	Trends	Log Out	

2. Select required HPM1 from controller list and press appropriate controller.

Con	trollers	14:32	номе						
Prev 10	Тор								
DXU3		Temp: 70	.4°F Setp: 70.0°F						
HPM1		UnitStatus Auto 0.00 % No							
ZXU	Unit Status Heat 0.03 % 0.00 % 0.00 % Yes								
FCU4	Temp: 70.3°F Setp: 69.0°F								
VAVD		Temp: 70	.8°F Setp: 71.0°F						
VAVI		Temp: 70	.2°F Setp: 73.0°F						
VAVD		Temp: 70	.3°F Setp: 72.5°F						
VAVI	Temp: 70.6°F Setp: 70.0°F								
CCU		Sup.: 47.	4°F Ret.: 47.8°F						
LCU		Circuits	On: 2 3 4 5 6 7						

3. Press All Settings.

	Edit Controller		14:33	PREV	HOME
Save	Delete	Replace	Details	Upgr	ade Reset
Name		HPM1			
A Sett	ll ings	Inputs	(Dutputs	Alarms
Subs; Sta		HVAC Setup		Reset untimes	
Res Defe					

4. Press System Configuration.

HPM1 Settings	14:33	Paste	PREV		HOME
Commissionin		More	÷		
System Configuration				2 Pipe 2	Tank
HPM1 System Configuration 08:			Save	PRE	V HOME

System Configuration

2 Pipe 2 Tank •	
Modulated Cooling	More
Staged Heating	More
Modulated Heating	More
Stage Lead Lag	Disabled
Next 7	Bottom

5. The System Configuration menu opens.a. Select "2 Pipe 2 Tank" or "4 Pipe 2 Tank."b. Press Save.

14:33 HOME HPM1 Settings Paste PREV Commissioning 2 Pipe 2 Tank System Configuration Tank Setpoints PREV HOME HPM1 Tank Setpoints 14:40 Save 115.0 °F Tank Heat Setpoint Tank Cool Setpoint 40.0 °F Modulated Cooling Staged Heating More Modulated Heating More. Stage Lead Lag Disabled Next 7 Bottom

6. Press Tank Setpoints.

- 7. The Tank Setpoints menu opens.
 - a. Specify Tank Heat Setpoint in degrees.
 - b. Specify Tank Cool Setpoint in degrees.
 - c. Press Save.
- 8. Press OAT Reset Cool.

HPM1 Settings	14:33	Past	Paste PREV		HOME
Commissioning				Mo	эге
System Configuration				2 Pipe	2 Tank
Tank Setpoint	8	More			
OAT Reset Co	ol	More			
HPM1 OAT Reset Cool 15:19			Sav	ve PREV	номе
Reset Low		-4.0	F		
Reset High		-4.0	Ϋ́F		
SP Low		60.0	F		
SP High	40.0 °F				
Stage Lead Lag			Disabled		
Next 7		Bottom			ttom

- 9. The OAT Reset Cool menu opens.
 - a. Specify **Reset Low** in degrees. The lowest cooling outdoor design temperature. (A setting of -4 disables the reset feature).
 - b. Specify **Reset High** in degrees. The highest cooling outdoor design temperature. (A setting of -4 disables the reset feature).
 - c. Specify **SP Low**, the lowest cooling supply water temperature in degrees.

- d. Specify **SP High**, the highest cooling supply temperature in degrees.
- e.Press Save.

10.Press OAT Reset Heat.

HPM1 Settings	14:33	14:33 Paste		Р	REV	HOME	
Commissioning					More		
System Configura	tion				2 Pipe 2	Tank	
Tank Setpoint	ŝ		More				
OAT Reset Co	OAT Reset Cool			More			
OAT Reset He	OAT Reset Heat				More	2	
HPM1 OAT Reset Heat		15:19	Sav	re	PREV	HOME	
Reset Low		-4.0	F				
Reset High		-4.0	°F				
SP Low	1	120.0 °F					
SP High	100.0 °F						
Next 7					Botte	om	

- 11. The OAT Reset Heat menu opens.
 - a. Specify **Reset Low** in degrees. The lowest heating outdoor design temperature. (A setting of -4 disables the reset feature).
 - b. Specify **Reset High** in degrees. The highest heating outdoor design temperature. (A setting of -4 disables the reset feature).
 - c. Specify **SP Low**, the lowest heating supply water temperature in degrees.
 - d. Specify **SP High**, the highest heating supply temperature in degrees.
 - e.Press Save.

12.Press Staged Cooling.

HPM1 Settings	14:33	Past	e	PREV	HOME	
Commissioning	Commissioning				·	
System Configurat	tion		2 Pipe 2 Tank			
Tank Setpoints	5		More			
OAT Reset Cool				More		
OAT Reset Hea	OAT Reset Heat			More		
Staged Cooling	Staged Cooling			More	·	
HPM1 Staged Cooling		15:23	Save	PREV	HOME	
Stages		2				
Control band		1.0	°F			
Stage time		5.0	Min			
Next 7			Bottom			

- 13. The Staged Cooling menu opens.
 - a. Specify number of Stages of equipment (0-2).
 - b. Specify the stage **Control band** in degrees. Cannot be set to 0.
 - c. Specify the **Stage time** in minutes. Cannot be set to 0.
 - d.Press Save.

14.Press Modulated Cooling.

HPM1 Settings	14:33	Paste	PREV			номе	
Commissioning					Mor	e	
HPM1 Modulated Cooling			:	Save PREV		7	HOME
Кр		5.0	00	%			
Ki		0.0)5	%			
Min AO Voltage	Min AO Voltage						
Max AO Voltage		10	.0	v			
Modulated Cool	ing				Mor	e	
Staged Heating	g				Mor	e	
Modulated Heating More							
Stage Lead La	Stage Lead Lag Disabled						
Next 7 Bottom							

- 15. The Modulated Cooling menu opens.
 - a.Specify **Min AO (Output) Voltage** (0-10VDC). 2.0 VDC Shown as example.
 - b.Specify **Max AO (Output) Voltage** (0-10VDC). 10.0 VDC shown as example.
 - c. Press Save.

NOTE: DO NOT change factory KP/KI settings. Please review Factory KP/KI Setting White Paper #508-001.

16.Press Staged Heating.

- 17. The Staged Heating menu opens.
 - a. Specify number of Stages of equipment (0-2).
 - b.Specify the stage **Control band** in degrees. Cannot be set to 0.
 - c. Specify the **Stage time** in minutes. Cannot be set to 0.

d.Press Save.

18.Press Modulated Heating.

HPM1 Settings	14:33	Paste		PI	ÆV	номе	
Commissioning			More				
System Configura	System Configuration				2 Pipe 2	Tar	ık
Tank Setpoints	5				More	·	
HPM1 Modulated Heati	ng	15:24	s	iave	PREV		HOME
Кр		5.	00	%			
Ki		0.	05	%			
Min AO Voltage		0	.0	V			
Max AO Voltage		10	0.0	V			
Modulated Heat	ing				More		
Stage Lead La	g				Disab	led	
Next 7					Botto	m	

- 19. The Modulated Heating menu opens.
 - a. Specify **Min AO (Output) Voltage** (0-10VDC). 2.0 VDC Shown as example.
 - b.Specify Max AO (Output) Voltage (0-10VDC). 10.0 VDC shown as example.

c. Press Save.

NOTE: DO NOT change factory KP/KI settings. Please review Factory KP/KI Setting White Paper #508-001.

20.Press Stage Lead Lag.

HPM1 Settings	14:33	Paste		PREV	HOME	
Commissioning			More			
System Configura	tion			2 Pipe 2 Tank		
Tank Setpoint	s		More			
OAT Reset Co	ol		More			
OAT Reset Heat				Mor	e	
HPM1 Stage Lead Lag	HPM1 Stage Lead Lag 15:25			PREV	номе	

Stage Lead Lag

21. The Stage Lead Lag menu opens.

- a.Select "Enable" or "Disabled."
- b.Press Save.

22.Press Next 7.

HPM1 Settings	14:33	Paste	PREV		HOME	
Commissionin	g			Mor	e	
System Configura	ation			2 Pipe 2	2 Tank	
Tank Setpoint	S			Mor	e	
OAT Reset Co	ol			Mor	e	
OAT Reset He	at		More			
Staged Coolin	g		More			
Modulated Cool	ing		More			
Staged Heatin	g		More			
Modulated Heat	Modulated Heating			Mor	e	
Stage Lead Lag			Disabled			
Next 7			Bottom			

23. Press Supplemental Heat.

HPM1 Settings	14:33		Paste PREV			HOME	
Prev 10			Тор				
Supplemental Heat					More		
HPM1 Supplemental Heat			5:25	Save	PREV	номе	
Max Tank/Ground Diff				80.0	°F		
Tank/Ground Diff DB				2.0	°F		
Min Ground Temp				38.0	°F		
Min Ground Temp DB				2.0	°F		
Max TankSp Diff	Max TankSp Diff			20.0	°F		
Runtime Limits					More		
Rev Vlv Action				Ene	ergize on	Heat	

- 24. The Supplemental Heat menu opens.
 - a.Specify the **Max Tank/Ground Diff**. in degrees. Temperature difference between the storage tank and its current setpoint that triggers supplemental heating or cooling. 0 disables.
 - b.Specify **Tank/Ground Diff DB** in degrees. Rise above Max Tank/Source differential that will end supplemental heating.
 - c. Specify **Min Ground Temp** in degrees. Source water temperature that triggers supplemental heating.
 - d. Specify **Min Ground Temp DB** in degrees. Temperature rise above the water min temperature to end supplemental heating.
 - e. Specify **Max TankSP Diff** in degrees. Difference between tank temperature and its setpoint that triggers supplemental heating.
 - f. Press Save.

25.Press Sensor Settings.

HPM1 Settings	14:33		Paste	PREV	номе		
Prev 10	Тор						
Supplemental Heat				More			
Sensor Settings							
HPM1 Sensor Settings		15:3	27 Sa	ve PRE	V HOME		
Ground Temp Sensor			Precon III •				
Tank Temp Sensor			P	recon III 🔹			
Watts full Scale				100			
Runtime Limits			More				
Rev VIv Action			Energize on Heat				

26. The Sensor Settings menu opens.

- a. Select Ground Temp Sensor:
 - VTS
 - Precon III (Standard Taco Sensors)
 - Precon II
- b.Select Tank Temp Sensor:
 - VTS
 - Precon III (Standard Taco Sensors)
 - Precon II
- c. Specify **Watts Full Scale**. The maximum power measured by the power transducer (optional input).

d.Press Save.

27.Press Changeover Settings.

28. The Changeover Settings menu opens.

- a. Select CO Type:
 - -Auto
 - -Heat Only
 - -Cool Only
- b. Specify Hours between changeover.
- c. Specify Minutes component of hours.
- d. Select Demand Type:
 - -Total Demand
 - -Zone Max
 - -Reference Zone
 - -Digital Input
- e.Press Save.

29.Press OAT Cutoffs.

HPM1 Settings	14:33		Paste		PREV	HOME	
Prev 10			Тор				
Supplemental Heat			More				
Sensor Settings			More				
Changeover Settings	i						
OAT Cutoffs					More		
HPM1 OAT Cutoffs	1	5:28	Save		PREV	HOME	
Heat Max OAT			-4.0	٩	F		
Cool Min OAT			-4.0	°I	F		
Rev Vlv Action				1	Energize on H	leat	

30. The OAT Cutoffs menu opens.

a. Specify **Heat Max OAT** in degrees.

b. Specify Cool Min OAT in degrees.

NOTE: A setting of "-4.0" disables these settings.

c. Press Save.

31.Press Alarm Settings.

HPM1 Settings	14:33		Paste		PREV		HOME
Prev 10						Тор	
HPM1 Alarm Settings		15	:28	Sav	re	PREV	HOME
Heat Emergency Temp				34	1.0	°F	
Recovery Temp				39	9.0	°F	
Recovery Minutes				(0	Min	
Recovery Hours					2	Hr	
Equip Status Delay				2	55	Sec	
Alarm Settings						More	
Runtime Limits						More	
Rev Vlv Action					Е	nergize on H	leat

- 32. The Alarm Settings menu opens.
 - a. Select **Heat Emergency Temp** in degrees. The source water temperature that initiates the supplemental heating source.
 - b. Select **Recovery Temp** in degrees. Source water temperature that allows for a recovery from emergency heating.
 - c. Select **Recovery Minutes**. Period of time in which the controller attempts to recover from an emergency heating condition. **NOTE:** if both minutes and hours are set to zero, a user reset is required to recover from this alarm.
 - d.Select Recovery Hours.
 - e. Select **Equipment Status Delay** in seconds. Period of time the controller waits before declaring an Equipment status delay interval alarm after Source demand for the Equipment Status input to go low. A value of 255 disables this alarm.
 - f. Press Save.

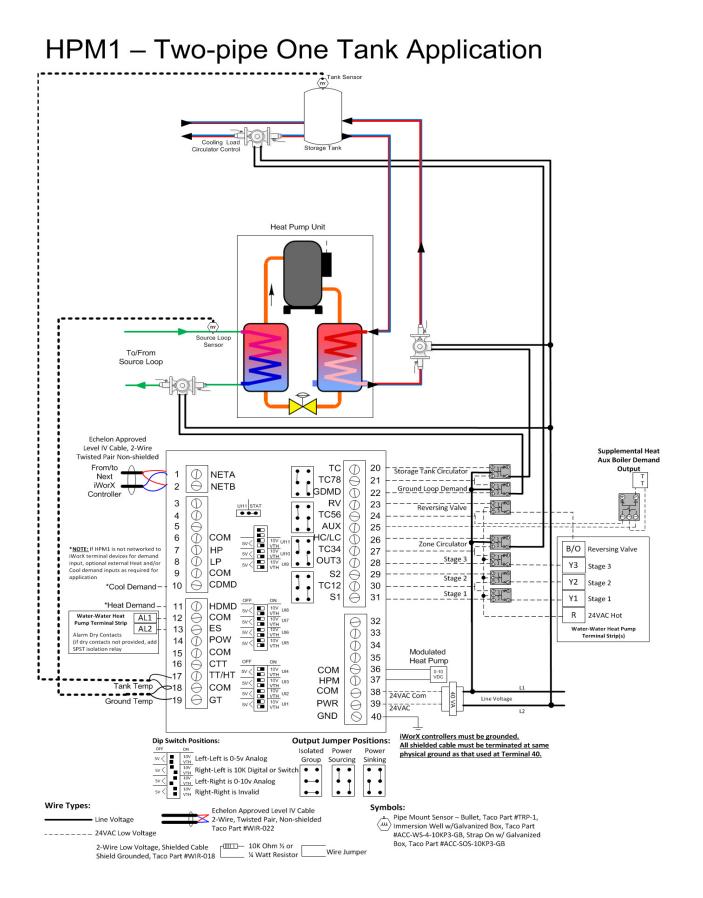
33.Press Reversing Vlv Action.

HPM1 Settings	14:33	Pas	te	PREV	HOME			
Prev 10			Төр					
Supplemental Heat	Supplemental Heat			More				
Sensor Settings			More					
Changeover Settings	5			More				
HPM1 Rev Vlv Action 15:3			Save	PREV	номе			

Rev Vlv Action

Energize on Heat ·

Rev Vlv Action	Energize on Heat
----------------	------------------


34. The Reversing VIv Action menu opens.

a.Select:

- Energize on Heat
- Energize on Cool

NOTE: See WSHP equipment manufacturer requirements.

a.Press Save.

505-032, Effective: June 5, 2014

HPM1 1-TANK SYSTEM SETUP

2-pipe, 1-tank system

Controls up to:

- 1 ea. 3-Stage Water-to-Water Heat Pump,
- 3 ea. 1-Stage Water-to-Water Heat Pumps or 1 ea.
- 0-10VDC Modulating Water-to-Water Heat Pump and 1 ea. Auxiliary Boiler

Sensors Required: Tank Temp, Ground Loop Water Temp

Setup Instructions

1. Press Controllers from main screen.

LCI2	14:57	PREV	HOME
Controllers	LZones	Remote LCIs	Alarms (None)
Schedules	Groups	Holidays	Utilities
Data Logs	Trends	Log Out	

2. Select required HPM1 from controller list and press appropriate controller.

Con	trollers	14:32	номе					
Prev 10	Тор							
DXU3		Temp: 70	.4°F Setp: 70.0°F					
HPM1		UnitStatus	s Auto 0.00 % No					
ZXU		Unit Status Heat 0	.03 % 0.00 % 0.00 %	Yes				
FCU4		Temp: 70	.3°F Setp: 69.0°F					
VAVD		Temp: 70	.8°F Setp: 71.0°F					
VAVI		Temp: 70	.2°F Setp: 73.0°F					
VAVD		Temp: 70	.3°F Setp: 72.5°F					
VAVI		Temp: 70.6°F Setp: 70.0°F						
CCU		Sup.: 47.4°F Ret.: 47.8°F						
LCU		Circuits	On: 2 3 4 5 6 7					

3. Press All Settings.

	Edit Controller		14:33	PR	ΈV	HOME	
Save	Delete	Replace	Details		Upgrad	le	Reset
Name		HPM1					
	All tings	Inputs		Dutputs		A	larms
	atus	HVAC Setup		Reset untimes			
	store faults		l				

4. Press System Configuration.

HPM1 Settings	14:33	Paste	Paste		aste I		aste P		EV		HOME
Commissioning			More								
System Configura	tion				2 Pipe 2	? Tan	k				
HPM1 System Configura	ition	14:34	14:34 Save PREV II			номе					

System Configuration

2 Pipe 1 Tank 🔹

Modulated Cooling	More
Staged Heating	More
Modulated Heating	More
Stage Lead Lag	Disabled
Next 7	Bottom

5. The System Configuration menu opens.a. Select "2 Pipe 1 Tank."b. Press Save.

6. Press Tank Setpoints.

HPM1 Settings	14:33		Past	te PREV			HOME
Commissionin	Commissioning					More	e
System Configura	tion			Γ		2 Pipe 2	Tank
Tank Setpoint	s					Mor	e
HPM1 Tank Setpoints		14	4:40	Sav	e	PREV	номе
Tank Heat Setpoint				115	5.0	°F	
Tank Cool Setpoint				40	.0	°F	
Modulated Cool	ing			More			
Staged Heating	g			More			e
Modulated Heat	Modulated Heating			More			
Stage Lead Lag				Disabled			
Next 7					Bottom		

- 7. The Tank Setpoints menu opens.
 - a. Specify Tank Heat Setpoint in degrees.
 - b. Specify Tank Cool Setpoint in degrees.
 - c. Press Save.
- 8. Press OAT Reset Cool.

HPM1 Settings	14:33	Paste	Paste		HOME	
Commissioning				Mor	e	
System Configura	tion			2 Pipe 2	2 Tank	
Tank Setpoints	ŝ			Mor	e	
OAT Reset Co	ol			Mor	e	
HPM1 OAT Reset Cool		15:19	Save	PREV	номе	
Reset Low		-4.0 °	°F			
Reset High		-4.0 °	F			
SP Low		°0.0	F			
SP High	40.0 °F					
Stage Lead Lag				Disa	bled	
Next 7	Bottom				om	

- 9. The OAT Reset Cool menu opens.
 - a. Specify **Reset Low** in degrees. The lowest cooling outdoor design temperature. (A setting of -4 disables the reset feature).
 - b. Specify **Reset High** in degrees. The highest cooling outdoor design temperature. (A setting of -4 disables the reset feature).
 - c. Specify **SP Low**, the lowest cooling supply water temperature in degrees.

d. Specify **SP High**, the highest cooling supply temperature in degrees.

e.Press Save.

```
10.Press OAT Reset Heat.
```

HPM1 Settings	14:33	Paste PREV		HOME		
Commissionin	ng More				re	
System Configura	ition			2 Pipe	2 Tank	
Tank Setpoint	s			Mo	re	
OAT Reset Co	ol			Mo	re	
OAT Reset He	at			Mo	re	
HPM1 OAT Reset Heat		15:19	Sav	ve PREV	номе	
Reset Low	-4	•.0	F			
Reset High	-4	• .0	F			
SP Low	12	120.0 °F				
SP High	10	100.0 °F				
Next 7				Bot	tom	

- 11. The OAT Reset Heat menu opens.
 - a.Specify **Reset Low** in degrees. The lowest heating outdoor design temperature. (A setting of -4 disables the reset feature).
 - b. Specify **Reset High** in degrees. The highest heating outdoor design temperature. (A setting of -4 disables the reset feature).
 - c. Specify **SP Low**, the lowest heating supply water temperature in degrees.
 - d. Specify **SP High**, the highest heating supply temperature in degrees.
 - e.Press Save.

12. Press Staged Cooling.

HPM1 Settings	14:33	Past	e	PREV	HOME	
Commissioning	Commissioning				e	
System Configura	tion		2 Pipe 2 Tank			
Tank Setpoints	ŝ			Mor	e	
OAT Reset Cool				Mor	c	
OAT Reset Heat				Mor	e	
Staged Cooling	g			Mor	e	
HPM1 Staged Cooling		15:23	Save	PREV	HOME	
Stages		2				
Control band		1.0	°F			
Stage time		5.0 Min				
Next 7				Bott	om	

- 13. The Staged Cooling menu opens.
 - a. Specify number of **Stages** of equipment (0-3).
 - b. Specify the stage **Control band** in degrees. Cannot be set to 0.
 - c. Specify the **Stage time** in minutes. Cannot be set to 0.
 - d.Press Save.

<u>OR</u>

14. Press Modulated Cooling.

- 15. The Modulated Cooling menu opens.
 - a.Specify **Min AO (Output) Voltage** (0-10VDC). 2.0 VDC Shown as example.
 - b.Specify **Max AO (Output) Voltage** (0-10VDC). 10.0 VDC shown as example.
 - c. Press Save.

NOTE: DO NOT change factory KP/KI settings. Please review Factory KP/KI Setting White Paper #508-001.

16.Press Staged Heating.

- 17. The Staged Heating menu opens.
 - a. Specify number of Stages of equipment (0-3).
 - b. Specify the stage **Control band** in degrees. Cannot be set to 0.
 - c. Specify the **Stage time** in minutes. Cannot be set to 0.
- d.Press Save.

18.Press Modulated Heating.

HPM1 Settings	14:33	Paste PREV			æv	HOME		
Commissioning	Commissioning				More			
System Configura	tion				2 Pipe 2	Tank		
Tank Setpoints	5				More	·		
HPM1 Modulated Heati	HPM1 Modulated Heating 15:24			Save	PREV	номе		
Кр		5.	00	%				
Ki		0.05 %						
Min AO Voltage		0	0.0 V					
Max AO Voltage		10	10.0 V					
Modulated Heating More								
Stage Lead La	g	Disabled			led			
Next 7		Bottom			m			

- 19. The Modulated Heating menu opens.
 - a.Specify **Min AO (Output) Voltage** (0-10VDC). 2.0 VDC Shown as example.
 - b.Specify Max AO (Output) Voltage (0-10VDC). 10.0 VDC shown as example.

c. Press Save.

NOTE: DO NOT change factory KP/KI settings. Please review Factory KP/KI Setting White Paper #508-001.

20.Press Stage Lead Lag.

HPM1 Settings	14:33	Past	e	PREV	HOME	
Commissionin	g		More			
System Configura	System Configuration			2 Pipe 2	Tank	
Tank Setpoint	s		More			
OAT Reset Cool				More	e	
OAT Reset He	OAT Reset Heat			More	e	
HPM1 Stage Lead Lag 15:25			Save	PREV	HOME	

Stage Lead Lag

21. The Stage Lead Lag menu opens.

- a.Select "Enable" or "Disabled."
- b.Press Save.

22.Press Next 7.

HPM1 Settings	14:33	Paste	,	PREV	HOME		
Commissionin	g			Mor	e		
System Configura	ition			2 Pipe 2	2 Tank		
Tank Setpoint	s			Mor	e		
OAT Reset Co	ol			Mor	e		
OAT Reset He	at			Mor	e		
Staged Coolin	g		More				
Modulated Cool	ing			Mor	e		
Staged Heatin	Staged Heating				e		
Modulated Heat	Modulated Heating More						
Stage Lead La		Disabled					
Next 7			Bottom				

23. Press Supplemental Heat.

HPM1 Settings	14:33	Paste	Paste PREV		HOME	
Prev 10			Тор			
Supplemental Heat				More		
HPM1 Supplemental He	at	15:25	Save	PREV	номе	
Max Tank/Ground Diff		[80.0	°F		
Tank/Ground Diff DB			2.0	°F		
Min Ground Temp			38.0	°F		
Min Ground Temp DB			2.0	°F		
Max TankSp Diff			20.0	°F		
Runtime Limits		More				
Rev VIv Action			Er	ergize on l	Heat	

- 24. The Supplemental Heat menu opens.
 - a. Specify the **Max Tank/Ground Diff**. in degrees. Temperature difference between the storage tank and its current setpoint that triggers supplemental heating or cooling. 0 disables.
 - b.Specify **Tank/Ground Diff DB** in degrees. Rise above Max Tank/Source differential that will end supplemental heating.
 - c. Specify **Min Ground Temp** in degrees. Source water temperature that triggers supplemental heating.
 - d. Specify **Min Ground Temp DB** in degrees. Temperature rise above the water min temperature to end supplemental heating.
 - e. Specify **Max TankSP Diff** in degrees. Difference between tank temperature and its setpoint that triggers supplemental heating.
 - f. Press Save.

25.Press Sensor Settings.

HPM1 Settings	14:33		Paste	PREV		номе	
Prev 10			Төр				
Supplemental Heat				Mo	ore		
Sensor Settings				Mo	ore		
HPM1 Sensor Settings		15:2	27 S:	ive PR	EV	HOME	
Ground Temp Sensor			F	Precon III •			
Tank Temp Sensor			F	Precon III -			
Watts full Scale				100			
Runtime Limits			More				
Rev Vlv Action			Energize on Heat				

26. The Sensor Settings menu opens.

a. Select Ground Temp Sensor:

- VTS

- Precon III (Standard Taco Sensors)
- Precon II

b.Select Tank Temp Sensor:

- VTS
- Precon III (Standard Taco Sensors)
- Precon II
- c. Specify **Watts Full Scale**. The maximum power measured by the power transducer (optional input).
- d.Press Save.

27.Press Changeover Settings.

- 28. The Changeover Settings menu opens.
 - a. Select CO Type:
 - -Auto
 - -Heat Only
 - -Cool Only
 - b. Specify Hours between changeover.
 - c. Specify Minutes component of hours.

d. Select Demand Type:

- -Total Demand
- -Zone Max
- -Reference Zone
- -Digital Input

e.Press Save.

29.Press OAT Cutoffs.

HPM1 Settings	14:33	1	Paste	PREV	номе			
Prev 10	Prev 10			Тор				
Supplemental Heat	Supplemental Heat			More				
Sensor Settings				More				
Changeover Settings	Changeover Settings			More				
OAT Cutoffs				More				
HPM1 OAT Cutoffs	15	28	8 Save PREV HOM					
Heat Max OAT			-4.0	°F				
Cool Min OAT			-4.0 °F					
Rev Vlv Action			Energize on Heat					

30. The OAT Cutoffs menu opens.

a. Specify Heat Max OAT in degrees.

b. Specify Cool Min OAT in degrees.

NOTE: A setting of "-4.0" disables these settings.

c. Press Save.

31.Press Alarm Settings.

HPM1 Settings	14:33		Pas	te		PREV	HOME	
Prev 10				Тор				
HPM1 Alarm Settings		15:	28	Sav	re	PREV	номе	
Heat Emergency Temp				34	1.0	°F		
Recovery Temp				39	9.0	°F		
Recovery Minutes					0	Min		
Recovery Hours					2	Hr		
Equip Status Delay				2	55	Sec		
Alarm Settings						More		
Runtime Limits						More		
Rev Vlv Action					E	ènergize on I	Heat	

- 32. The Alarm Settings menu opens.
 - a. Select **Heat Emergency Temp** in degrees. The source water temperature that initiates the supplemental heating source.
 - b. Select **Recovery Temp** in degrees. Source water temperature that allows for a recovery from emergency heating.
 - c. Select **Recovery Minutes**. Period of time in which the controller attempts to recover from an emergency heating condition. **NOTE:** if both minutes and hours are set to zero, a user reset is required to recover from this alarm.
 - d.Select Recovery Hours.
 - e. Select **Equipment Status Delay** in seconds. Period of time the controller waits before declaring an Equipment status delay interval alarm after Source demand for the Equipment Status input to go low. A value of 255 disables this alarm.
 - f. Press Save.

33.Press Reversing VIv Action.

HPM1 Settings	14:33	Pas	ite	PREV	HOME		
Prev 10			Тор				
Supplemental Heat			More				
Sensor Settings	Sensor Settings			More			
Changeover Settings	5	More					
HPM1 Rev Vlv Action 15:3			Save	PREV	HOME		

Rev Vlv Action

Energize on Heat ·

Rev Vlv Action Energize on Heat

34. The Reversing VIv Action menu opens.

- a.Select:
 - Energize on Heat
 - Energize on Cool

NOTE: See WSHP equipment manufacturer requirements.

a.Press Save.

ASSOCIATING THE HPM1 TO OTHER IWORX® MODULES ON THE NETWORK

If the HPM1 is part of a network with the LCl2, it can be configured to be networked with other controllers. All other controllers utilizing the HPM1 for supply water should be associated.

Setup Instructions

- 1. Complete the setup procedure previously detailed.
- 2. Press **Controllers** from main screen.

LCI2	14:57	PREV	НОМЕ
Controllers	LZones	Remote LCIs	Alarms (None)
Schedules	Groups	Holidays	Utilities
Data Logs	Trends	Log Out	

3. Select required HPM1 from controller list and press appropriate controller.

Con	trollers	14:32	PREV	номе					
Prev 10	Тор								
DXU3		Temp: 70.4°F Setp: 70.0°F							
HPM1		UnitStatus	s Auto 0.00 % No						
ZXU		Unit Status Heat 0.03 % 0.00 % 0.00 % Yes							
FCU4	Temp: 70.3°F Setp: 69.0°F								
VAVD		Temp: 70.8°F Setp: 71.0°F							
VAVI	Temp: 70.2°F Setp: 73.0°F								
VAVD		Temp: 70.3°F Setp: 72.5°F							
VAVI	Temp: 70.6°F Setp: 70.0°F								
CCU	Sup.: 47.4°F Ret.: 47.8°F								
LCU	Circuits On: 2 3 4 5 6 7								

4. Press HVAC Setup.

Edit Controller			Q	08:58 PREV		HOME		
Save	Delete	Replace		Details		Upgrad	ie	Reset
Name		HPM1						
A Sett		Inputs		(Dutput	5	A	larms
Subs Sta	ystem	HVAC Setup			Rese			

5. Press Members.

HPM1 HVAC Setup		08:58	PREV	номе
Temperature Setpoints	Members			

6. The Members menu opens.

HPM1 Mer	nbers 08:59 Save PREV HOM				HOME	
BZU2	Associated to : BLMC					
DXU3	Master: HPM1					
ZXU	Associated to : BLMC					
FCU4		Master: HPM1				

- 7. The LCI identifies all appropriate members within the LCI's network of controllers.
- 8. Click on appropriate controller shown in gray (Not associated) to associate to the HPM1.
- 9.A successful association changes to RED and state MASTER: HPM1 (or HPM1 controller's current name).
- 10.Press Save.

SPECIFICATIONS

Electrical Inputs

Ground Temperature, Tank Temperature, Heating Tank Temperature, Cooling Tank Temperature: Precon Type III 10K thermistor or Taco VTS sensor

Power Transducer: 0 - 10 Volts DC

Equipment Status, Heat Demand, Cool Demand, Low Pressure Alarm, High Pressure Alarm: Dry Contact, 5 Volts DC Max

Electrical Outputs

Heat Pump Stage 1, Heat Pump Stage 2, Heat Pump Stage 3, Cooling Load Circulator, Tank Select, Heating Load Circulator, Load Circulator, Auxiliary Heat, Reversing Valve, Ground Demand, Tank Circulator: 24 Volts AC, 1 Amp at 50 °C, 0.5 Amps at 60 °C, limited by Class 2 supply

Modulated Heat Pump: 0-10 Volts DC, 2K Ohm minimum

Power

Requires: 24VAC (20VAC to 28VAC), requires an external Class 2 supply

Consumes: 7.2W with no external loads, maximum limited by the Class 2 supply rating

Recommended Sensor Wire

Maximum Length: 500 feet (152 meters)

Cable Type	Pairs	Details	Taco Catalog No.
18AWG	1	Stranded Twisted Shielded Pair, Plenum	WIR-018

Recommended LON Bus FTT-10A Network Wire

Speed: 78KBPS

Max Volts: 42.4 Volts DC

Cabling: Maximum node-to-node distance: 1312 feet (400 meters); Maximum total distance: 1640 feet (500 meters)

	Cable Type	Pairs	Details	Taco Catalog No.
I	_evel 4 22AWG (0.65mm)	1	Unshielded, Plenum, U.L. Type CMP	WIR-022

Mechanical

Dimensions: 5.55" (141mm) high, 6.54" (166 mm) wide, 1.75" deep (44 mm), ABS

Controller Weight: 0.70 pounds (0.32 kilograms)

Shipping Weight: 1.0 pounds (0.46 kilograms)

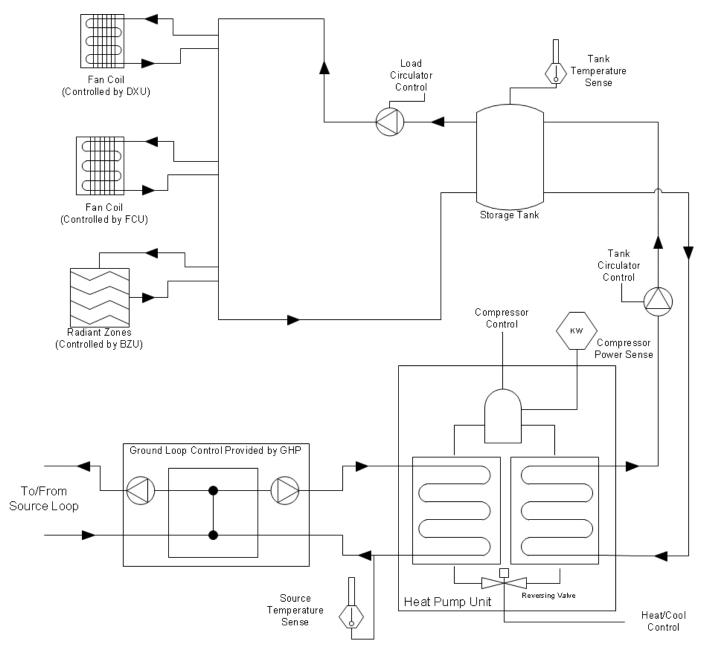
Processor: 3150 Neuron 10 MHz

Flash: 48 Kilobytes

SRAM: 8 Kilobytes

Termination: 0.197" (5.0 mm) Pluggable Terminal Blocks, 14-22 AWG
Temperature: 32 °F to 140 °F (0 °C to 60 °C)
Humidity: 0 to 90%, non-condensing
UL Listed for US and Canada, Energy Management Equipment PAZX and PAZX7
FCC Part 15 Class A compliant

APPLICATION DESCRIPTION

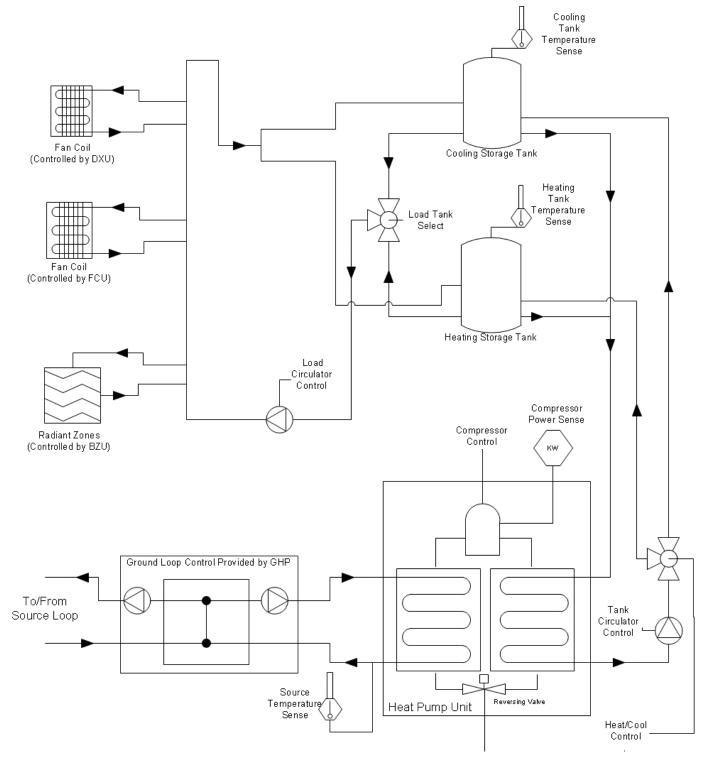

The HPM1 is a heat pump master controller that manages multiple stages of heat pumps to respond to heating or cooling demands from multiple zones in a liquid based HVAC system. It communicates on LON network with up to 32 hydronic zone controller units, that operate Fan Coils, Radiant Heating Zones, Chilled Beam Ceilings, and other terminal units. The HPM1 operates heat pumps, circulators and auxiliary heating units (boilers or electric heaters) to respond to the demand for Heated or Chilled liquid from the zone controllers.

When actively heating or cooling a buffer tank, the HPM1 activates the Tank Circulator, which moves fluid from the heat pumps to the tank.

If the heat pump stages are insufficient to meet heating demand, the HPM1 activates a supplement heating element; usually a boiler or electric heater.

When the HPM1 requires ground water, it may either activate a geothermal circulator with one of its digital outputs or make a request on the network to an associated Geothermal Pump controller (GHP).

The HPM1 supports three different hydronic system configurations: Two Pipe Single Tank, Two Pipe Two Tank and Four Pipe Two Tank.

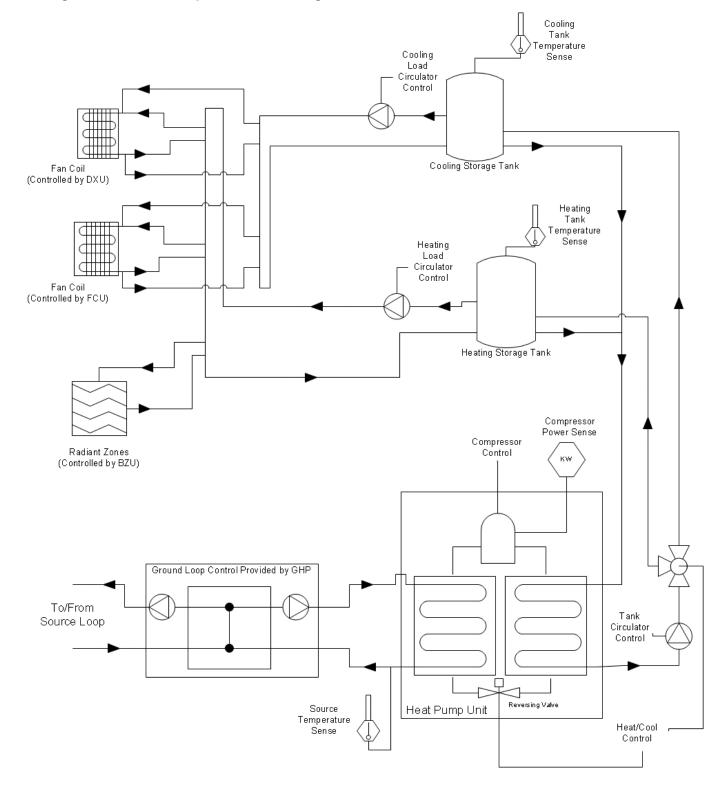

Figure 2: HPM1 Two Pipe Single Tank Configuration

In a Two Pipe, Single Tank system, a single supply loop runs to the associated zone controllers. It is fed from a single Buffer Tank. The supply loop may contain hot or cold water, based on the demand from the zone controllers. Note that this configuration means that at any given moment, only hot OR cold water may be supplied to the hydronic zones. Because there is a single buffer tank, there is a significant energy penalty when switching between Heating and Cooling as the heat pumps must change the temperature of all the water in the tank during the changeover.

When there is demand for heated or chilled water from the zone controllers (or from one of the hardwired digital demand inputs), the HPM1 will activate the Load Circulator to move water from the storage tank, through the load loop to the zones.

The HPM1 activates a heat pump to maintain the buffer tank's temperature setpoint. The buffer tank's temperature setpoint is determined by the demand from the zone controllers. When the zones require heating, the buffer tank is maintained at the heating setpoint. When zones require cooling, the buffer tank will use the cooling setpoint. Changeover between heating and cooling occurs when demand for the current mode is satisfied and a minimum changeover time has passed.

In this mode of operation, the HPM can stage on up to 3 heat pumps or control a modulating heat pump.


Figure 3: HPM1 Two Pipe Two Tank Configuration

In a Two Pipe, Two Tank system, a single supply loop runs to the associated zone controllers. It is fed from either a Hot Buffer Tank or a Cold Buffer Tank. The supply loop contains hot or cold water, based on the demand from the zone controllers. Note that this configuration means that at any given moment, only hot OR cold water may be supplied to the hydronic zones. The tankused to supply the load loop is determined by the Load Tank Select Output, which is assumed to control a three-way valve between the tanks and the load loop. Because there are separate buffer tanks for hot and cold water, there is a much smaller energy penalty when switching between Heating and Cooling, in comparison to a single buffer tank system.

When there is demand for heated or chilled water from the zone controllers (or from one of the hardwired digital demand inputs), the HPM1 will activate the Load Circulator to move water from one of the storage tanks, through the load loop to the zones.

The HPM1 activates heat pump stages to maintain the buffer tanks' temperature setpoint. Since the Heat Pumps can only maintain one tank at a time, the HPM1 will finish moving the first tank's temperature to the setpoint before moving on to the other. A three-way valve is required between the heat pump and the buffer tanks so that the HPM1 may select which tank the heat pump is heating or cooling. This valve should be connected to the same output as the Heat Pump's reversing valve.

In this mode of operation, the HPM1 can stage on as many as 2 heat pumps or control a modulating heat pump.

Figure 4: HPM1 Four Pipe Two Tank Configuration

In a Four Pipe Two Tank system, separate Hot and Cold Load Loops are run to the associated zone controllers. Each of these Loops are fed from their own buffer tank. This configuration may supply hot and cold water simultaneously, based on demand from the hydronic zone controllers. When there is zone demand for hot water, the HPM1 activates the heating load loop circulator to move water from the hot buffer tank to the zones that require heat. When there is demand for cooling, the HPM1 activates the cooling load loop circulator which moves water from the cold buffer tank through the cooling load loop.

The HPM1 activates heat pump stages to maintain the buffer tanks' temperature setpoint. Since the heat pump can only maintain one tank at a time, the HPM1 will finish moving the first tank's temperature to the setpoint before moving on to the other. A three-way valve is required between the heat pump and the buffer tanks in order for the HPM1 to select which tank the heat pump is heating or cooling. This valve should be connected to the same output as the Heat Pump's reversing valve.

In this mode of operation, the HPM1 can stage on up to 2 heat pumps or control a modulating heat pump.

SEQUENCE OF OPERATION

This section describes the detailed sequence of operation for the HPM1 control algorithms.

Communication with Associated Zone Controllers

In addition to the HPM1's sensor inputs (thermistors, digital demand), the HPM1 uses information from its associated zone controllers to determine operation.

Each second, one zone controller is polled. The zone controller responds to the HPM1 with zone demand information. This interaction is repeated each second for each of the zone controllers. When all zone controllers have been polled, the sequence repeats.

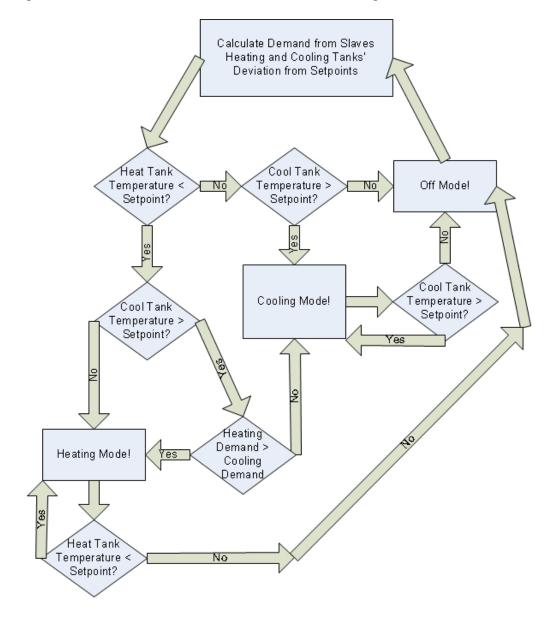
For more information, see the section "HPM1 and Associated Controller Communications" on page 38.

Operational Mode

The HPM1 operates in one of five operating modes: Primary Heating, Primary Cooling, Supplemental Heating, Emergency Heating, and Off. The operating mode determines whether warm water or cool water is supplied to the Storage Tank(s), and whether auxiliary heating elements are used.

The HPM1 determines the operational mode based on the temperature of the buffer tank(s) and sometimes the total zone demand supplied by the associated zone controllers. The operation of the load circulator(s) (and the Tank select valve in Two Pipe Two Tank Mode) is determined solely by zone demand.

Determining Operation Mode


Different mechanical configurations have slightly different methods of determining the operation mode as described below.

Mode Determination in a Two Tank System

In a Two Tank system, operating mode is determined solely on the temperature of the buffer tanks. First, the system checks which tank's temperature deviates the most from its setpoint. It brings that tank back to its setpoint, then moves on to the other. There is no changeover time between heating and cooling. For entry into supplemental and emergency heating, see the individual entries on those modes. If both tanks are at their setpoint, the mode switches off.

In a Two Pipe, Two Tank System, the load loop mode may be separate from the operational mode. It is determined by the total zone demand. On startup, the load loop will enter cooling if there is greater zone cooling demand. Otherwise it will enter heating. Once in a mode, the load loop will continue in that mode until all zone demand for that mode is met. Once demand for that mode is met it will switch to the other mode if such demand exists. Otherwise it will continue in the same mode.

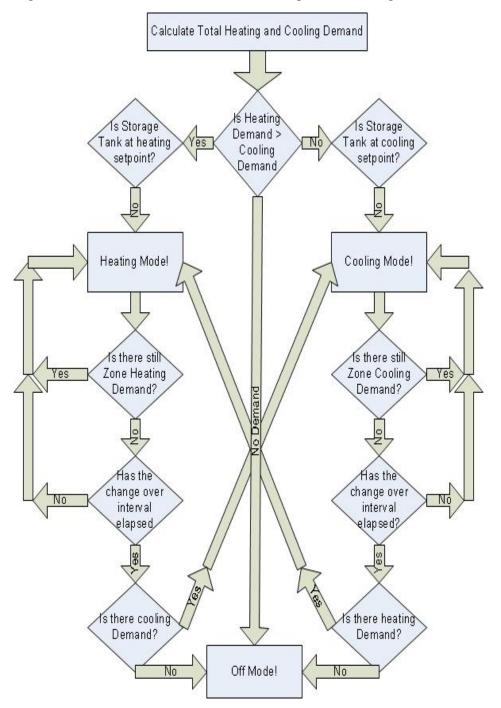

In a Four Pipe, Two Tank System, there are two load loops, so the heating and cooling can happen simultaneously.

Figure 5: HPM1 Mode Determination in a Two Tank Configuration

Mode Determination in a Single Tank System

In a Single Tank System, load loop mode will always match the HPM1's operational mode. First, the system calculates demand. If heating demand is greater, the HPM1 enter heating mode. If cooling demand is greater, then HPM1 enters cooling. Once in Heating or Cooling, the HPM1 will not exit that mode until all zone demand has been met AND a predefined changeover period has elapsed.

Figure 6: HPM1 Mode Determination in a Single Tank Configuration

Overriding the Operational Mode

The heating mode may be disabled during warm weather by setting the outdoor air temperature heating lockout *Max OAT Heat*. If the OAT is above the heating lockout temperature, the primary heating mode is disabled and the controller can only be in the primary off or primary cooling modes. This feature requires that a controller that broadcasts the OAT, such as an ASM2 or other controller that broadcasts the OAT, has been installed on the network.

The cooling mode may be disabled during cold weather by setting the outdoor air temperature cooling lockout *Min OAT Cool*. If the OAT is below the cooling lockout temperature, the primary cooling mode is disabled and the controller can only be in the primary off or primary heating modes. This feature requires that a an ASM2 be installed on the network.

Alarm conditions (High Pressure, Low Pressure, Plant [also known as Pump Proof] or Low Geothermal Loop temperature) also override the operation mode. A Low Geothermal Loop temperature will override the mode if emergency heating. Other alarms cause the HPM1 to transition to Off.

Occupancy Mode

The HPM does not use the occupancy data transmitted over the LON network, instead relying entirely on the demand data from associated controllers.

Supplemental Heating

There are often situations in which the heating output of heat pumps is inadequate to meet the system's demand. During these situations, the HPM1 operates in Supplemental Heating mode. The heat pumps operate normally, but an additional auxiliary heating element is brought online to pick up the slack. The circulators all operate normally.

There are three ways to enter Supplemental Heating:

Tank/Supply Maximum Differential - This is a configuration variable that sets the maximum allowable difference between the Source loop water temperature and the Tank water temperature. Once this temperature difference has been exceeded, the HPM will enter auxiliary heating. The HPM1 re-enters primary heating after a programmable hysteretic temperature has been reached.

Source Loop Temperature Supplemental Threshold - This is a configuration variable that sets the minimum or maximum temperature for the heat transfer medium in the Source loop. If the Source loop temperature goes below the minimum source loop threshold, the unit enters Supplemental Heating. The HPM1 will re-enter primary heating after a programmable hysteretic temperature has been reached.

Tank Setpoint Deviation Threshold - This is a configuration variable that sets the maximum allowable deviation of the Storage Tank temperature from its heating setpoint. The HPM1 will re-enter primary heating after the tank setpoint temperature has been reached.

Emergency Heating

Occasionally there are situations when the operation of heat pumps is undesirable or impossible. During these situations, the HPM1 operates in Emergency Heating. The heat pumps are turned off to allow the Source Loop time to recover. Auxiliary heating elements are activated. The Circulators operate normally.

Emergency heating is activated when the Source Loop Temperature falls below the *Source Loop Temperature Emer*gency Minimum Threshold.

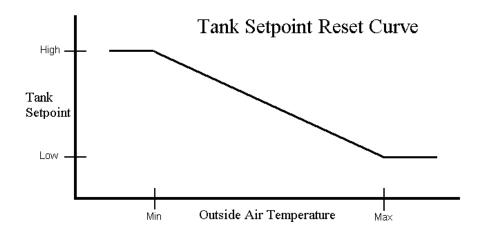
If Emergency Heating has been entered, the HPM1 does not attempt to re-enter normal modes of operation until it has been manually reset, or until after the *Emergency Minimum Recovery Interval* has elapsed. This setting is a configuration variable than can range from minutes to hours.

After the Emergency Minimum Interval has passed, the HPM1 enables source demand for 30 seconds to ensure an accurate measure of the Source Loop Temperature. If it has recovered to the *Emergency Mode Hysteresis Temperature*, the HPM1 will resume primary or supplemental operation as determined by conditions. If the *Source Loop Temperature* has not recovered, the HPM will try again after another Emergency Minimum Recovery interval has passed, and so on.

Setpoint Calculations

The *Heating and Cooling Tank Liquid Temperature* setpoints are programmable. In a single tank system, the effective setpoint is calculated based on the current operating mode. The effective setpoint is set to the heating setpoint when the operational mode is in heating. It is set to the cooling setpoint when the operational mode is in cooling. In a two tank system, both tanks maintain their own setpoints.

Outside Air Temperature Setpoint Reset Curve


If there is an ASM present on the network, the HPM1 may use an OAT reset curve to determine Tank setpoints.

If the OAT Setpoint Reset Curve is enabled, the HPM1 keeps track of the Outside Air temperature. It adjusts the heating and cooling tank setpoints to compensate for hotter or colder outside temperatures.

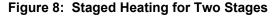
If the OAT is less than the OAT Minimum, then the Tank Setpoint High is used. If the OAT is greater than the OAT Maximum, then the Tank Setpoint Low is used.

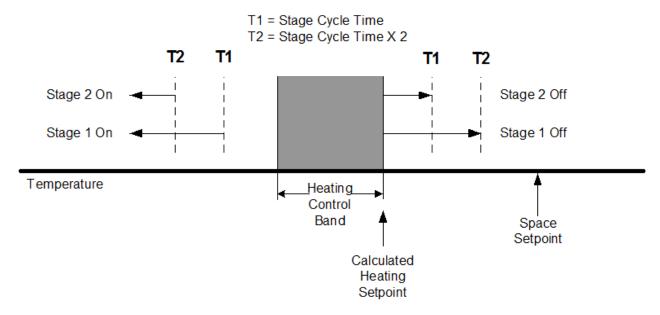
When the OAT is between the OAT Maximum and Temperature Differential Minimum, the Supply Temperature Setpoint is linearly interpolated between the Supply Setpoint High and Supply Setpoint Low.

When the OAT Maximum and Minimum are set to -4°F, the OAT Setpoint Reset Curve is disabled and the HPM1 operates with the usual heating and cooling supply air temperature setpoints.

Figure 7: OAT Tank Setpoint Reset Curve

Heating Sequence


The controller provides support for up to 3 Heat Pump stages (2-pipe, 1-tank) during heating, or a single modulating 0-10V Heat Pump. The type of heating is selected with configuration variables.

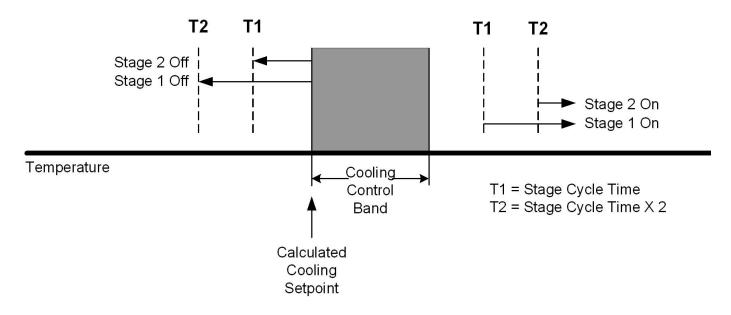

Staged Heating

The heating sequence is initiated when the current operating mode calls for heat.

The heat pump stages are sequenced based on the supply temperature, the heating setpoint and the control band. When tank temperature remains below the control band for an additional time period, the next available stage is turned on. This cycle continues until all available stages have been energized.

After the tank temperature has risen above the heating setpoint, the first available stage is turned off. If the tank temperature remains above the heating setpoints for an additional time period, the next available stage is turned off. This cycle continues until all available stages have been de-energized. If the tank temperature rises above the heating setpoint plus control band, all of the stages immediately cycle off.

Heating with Modulated output


With modulated heating, the heat pump is controlled by a P+I control loop (Note that the 'loop' in this sense refers to a Proportional, Integral control loop, rather than a loop in the hydronic sense) based on the Storage Tank heating setpoint and the Storage tank temperature. The P+I control loop modulates the output to maintain a constant tank temperature.

Cooling Sequence

Cooling Stages

The cooling sequence is initiated when the current operating mode calls for cooling. The Heat Pump stages are sequenced based on the Storage tank liquid temperature, the cooling setpoint and the control band. When buffer tank temperature rises above the cooling setpoint minus the control band, a stage is turned on. If buffer tank temperature remains above the control band for an additional time period, the next available stage is turned on. This cycle continues until all available stages have been energized.

After buffer tank temperature has dropped below the cooling setpoint, the first available stage is turned off. If buffer tank temperature remains below the cooling setpoint for an additional time-period, the next available stage is turned off. This cycle continues until all available stages have been de-energized. If buffer tank temperature drops below the cooling setpoint plus control band, all of the stages immediately cycle off.

Cooling with modulated Output

With modulated cooling, the Heat Pump is controlled by a modulated P+I control loop (Note that the 'loop' in this sense refers to a Proportional, Integral control loop, rather than a loop in the hydronic sense) based on the cooling setpoint and the cooling buffer tank temperature. The P+I control loop modulates the output to maintain a constant buffer tank temperature. As the buffer tank temperature decreases below the cooling setpoint, the heat pump output is modulated higher as the temperature increases above the cooling setpoint.

Lead/Lag of Heat Pump Stages

When more than one heat pump stage is present, it may be preferable to rotate which stage is activated first to prevent more wear on any one stage than any other. It is also desirable to be able to disable this feature.

The HPM1 utilizes its real time clock to track the date. The HPM1 divides the current day of the month by the number of stages. If this division has no remainder, then the 1st stage is activated first. If the division has a remainder of 1, then the 2nd stage is activated first, and so on.

Subsequent stages are enabled in numerical order, wrapping back around to the first stage.

Lead/lag of stages is activated or deactivated with the Lead/Lag Enable configuration parameter.

HPM1 and Associated Controller Communications

The HPM1 and its associated hydronic zone controllers transfer information at a frequency based on the number of associated zone controllers. The HPM1 polls a single associated zone controller once every second. If there are 4 associated controllers, it will communicate with all of them once every 4 seconds. Once every 5 seconds it will send a message to an associated zone controller containing information about the HPM1's operational mode.

The following information is transferred to the HPM1 from the associated zone controller:

• Zone Mode (Heat/Cooling/ Off)

- Heating Output
- Cooling Output
- Local Alarm

The following information is transferred from the HPM1 to the associated zone controller:

- Alarm
- · State of Load Loop for two state configurations

Associating Zone Controllers

The zone controllers and the HPM1 must be associated to share information. To associate the zones to the HPM1, select the HPM1 from the LCI's list of controllers, tap **HVAC** Setup then **Zone** Members. A list of all zone controllers on the network with the designation "Included" or "Excluded" is displayed. To include a zone controller, tap the preferred controller in the list. It then shows as "Included" and the color changes to Red. After all the associations are complete, tap Save to send the information to all associated controllers.

HPM and GHP Communications

HPM1 is capable of sending information on the heat pumps' energy consumption and demand for ground temperature water. The Taco Geothermal Pump controller (GHP) may use this data to provide Ground temperature water in the most efficient manner possible.

The HPM1 must be associated with the GHP to share information. See the GHP manual for a description of this process.

Runtime Accumulations

The total runtime is accumulated for the heat pump, load loop circulator, heat load circulator, cool load circulator and tank circulator. The runtimes are used to indicate that maintenance is required on the equipment controlled by these outputs. The runtimes are reset by an operator or maintenance person once service has been performed.

Heat Pump Power Consumption

The HPM1 is provided with an analog input to measure the amount of energy used by Heat Pump controllers. Taco can provide a power transducer that is compatible with this input. This input combined with Full Scale Power configuration parameter allows the HPM1 to calculate the instantaneous power consumed by the Heat Pump. This value will be integrated over time to calculate the watt hours of energy used. This information is transmitted to the GHP for COP and efficiency calculations.

CONTROLLER IDENTIFICATION

Once the HPM1 is properly installed and recognized by the LCI, the LCI may be used to configure the settings of the controller. This section describes the commands available on the LCI for configuration of the HPM1, and the meanings and default values for controller parameters. For more information on using the LCI, see the *iWorx*® *LCI Application Guide*.

Network Inputs

The HPM1 allows a network manager to write to Network Input Variables for the purpose of overriding the configuration, operation and outputs of the HPM1. The variables are listed below.

Values written to NVIs have absolute priority over any other controller operation.

• *nviOccCmd* overrides the occupancy as obtained from the thermostat. Writing to this variable will also be reflected in the controller's output of the occupancy mode. Note that this is NOT the occupancy sensor. The occupancy sensor hardware input (OCC) will still be displayed on the LCI based on its configuration.

• *nviResetRuntime* is a command to reset the fan, heating and cooling runtimes. If the value sent is 0, then no reset occurs; if the value sent is 1, then the runtimes are reset.

• *nviSysTime* is a time stamp to set the date and time. Writing to this variable will change the time on the device and will affect all time-related functions such as schedules.

• *nviOutOverride* is a structure (defined below) that overrides the hardware digital and analog outputs on the HPM1. These values allow the network controller to directly control the analog and digital outputs of the board. Additionally, the two floating setpoint outputs may be set directly.

NOTE: the HPM1 makes no attempt to interpret the outputs; assigning meaningless outputs (such as setting a digital output in both the digOut array and the fpOut array, or assigning values to FAN1 and FAN2 but leaving FAN3 as 0xFF) will have unpredictable results.

Network Variable Inputs (NVIs)

Internal Variable Name	Format	Range	Description
nviOccCmd	SNVT_occupancy	0=Occupied 1=Unoccupied 2=Bypass 3-Standby	Occupancy Command
nviResetRuntime	SNVT_lev_disc	0=no reset 1=reset runtimes	Resets fan, heating, and cooling runtimes
nviSysTime	SNVT_time_stamp	Date/Time	System time
nviOutOverride	Structure	Structure	Output override

Output Override Structure (NVI)

Name	Type/Range	Default	Description
digOut[8]	Unsigned Byte:	0xFF	digOut[0] = TO1 (pin 31) C1
	0=OFF	0xFF	digOut[1] = TO2 (pin 29) C2
	1=ON	0xFF	digOut[2] = TO3 (pin 28) H1
	0xFF=no override	0xFF	digOut[3] = TO4 (pin 26) H2
		0xFF	digOut[4] = TO5 (pin 25) FAN1
		0xFF	digOut[5] = TO6 (pin 23) FAN2
		0xFF	digOut[6] = TO7 (pin 22) FAN3
		0xFF	digOut[7] = TO8 (pin 20) DEH
aOut[4]	SNVT_lev_percent:	32767	aOut[0] = AO 0 (pin 37) HMOD
	0% to 100%	32767	aOut[1] = AO 1 (pin 35) CMOD
	32767=no override	32767	aOut[2] = AO 2 (pin 34) FAN
		32767	aOut[3] = AO 3 (pin 32) DMPM
fpOut[4]	SNVT_lev_percent:	32767	fpOut[0] = TO1=FSP Op, TO2=FSP CI
	0% to 100%	32767	fpOut[1] = TO3=FSP Op, TO4=FSP CI
	32767=no override	32767	fpOut[2] = unassigned
		32767	fpOut[3] = unassigned

Inputs

The Inputs screen displays the current values of the HPM1's inputs. These values cannot be changed.

Input	Range	Description
Outside Temp	-30 to 230 °F (-34.4 to 110 °C)	The Outside Air Temperature as reported by the ASM2 controller
Instantaneous Power	0 to 65535 watts	Instantaneous power measured by the controller
Ground Temperature	-30 to 230 °F (-34.4 to 110 °C)	Measured ground temperature
Tank/HW Tank Temp	-30 to 230 °F (-34.4 to 110 °C)	Tank temp in 2 pipe 1 tank configu- ration; HW Tank temperature in 2 tank applications
CW/Tank Temp	-30 to 230 °F (-34.4 to 110 °C)	Chilled water tank temperature in 2 tank applications
Digital Inputs		
Equip Status	Normal/Alarm	Equipment status of the controlled heat pump
Heat Demand	Off/On	External heating demand status
Cool Demand	Off/On	External cooling demand status
Low Pressure Alarm	Normal/Alarm	Low Pressure Alarm status
High Pressure Alarm	Normal/Alarm	High Pressure Alarm status

Outputs

The Outputs screen displays the current values of the HPM1's outputs. These values cannot be changed.

Output	Range	Description
Unit Status		
Mode	Off, Heat, Cool, Emergency Heat	Mode of the controller
Output	0 to 100%	% of the heat pump heating or cooling
In Alarm	No/Yes	
Digital Outputs		

Output	Range	Description
Stage 1	Off/On	Status of the stage 1 output
Stage 2	Off/On	Status of the stage 2 output
Stage 3/TS/Cool Circ	Off/On	Status of the output; dependent on applica- tion mode
Load Circ/Heat Circ	Off/On	Status of the output; dependent on applica- tion mode
Aux Heat	Off/On	Status of the auxiliary heat output
Rev Valve	Off/On	Status of the reversing valve output
Ground	Off/On	Status of the ground enable output
Tank Circ	Off/On	Status of the tank circulator output
Reversing Valve	Cool/Heat	Mode of the reversing valve
Runtimes		I
Heat Pump	0 to 65535 hours	Run hours for the heat pump
Load Circ	0 to 65535 hours	Run hours for the load circulator
Heat Load Circ	0 to 65535 hours	Run hours for the heating load circulator
Cool Load Circ	0 to 65535 hours	Run hours for the cooling load circulator
Tank Circ	0 to 65535 hours	Run hours for the tank circulator
Effective Tank SP	34 to 190 °F (1.1 to 87.7 °C)	The calculated tank setpoint depending on the output mode of the controller

Configuration

This section describes the settings that can be modified.

All Settings

This screen displays all of the controller's settings and provides access to edit all parameters from a single screen. Parameters that are structures are described in individual tables that follow.

Setting	Range	Default	Description
Commissioning	Structure	N/A	Commissioning Overrides of HPM1's Out-
			puts
System Configuration	Two Pipe Two Tank,	Two Pipe Two	Describes the piping and tank configuration
	Two Pipe One Tank,	Tank	of the system
	Four Pipe Two Tank		
Tank Setpoints	Structure	N/A	Setpoint Settings
OAT Reset Cool	Structure	N/A	OAT Setpoint Reset Curve Cooling
OAT Reset Heat	Structure	N/A	OAT Setpoint Reset Curve Heating
Staged Cooling	Structure	N/A	Staged Cooling Settings
Modulated Cooling	Structure	N/A	Modulated Cooling Settings
Staged Heating	Structure	N/A	Staged Heating Settings
Modulated Heating	Structure	N/A	Modulated Heating Settings
Stage Lead Lag	Enabled, Disabled	Enabled	Describes whether Lead/Lag of heat pump
			stages is enabled
Supplemental Heat	Structure	N/A	Supplemental Heating Settings
Sensor Settings	Structure	N/A	Temperature and Power Sensor Settings
Changeover Settings	Structure	N/A	Settings relating to automatic changeover of
			heat/ool mode in Two Pipe One Tank sys-
			tems
OAT Cutoffs	Structure	N/A	Provies entries for cutoff temperatures for
			heating and cooling

Setting	Range	Default	Description
Alarm Settings	Structure	N/A	All settings related to alarms
Runtime Limits	Structure	N/A	Runtime Limit Settings
Rev VIv Action	Energized on Heat, Energized on Cool	Energized on Heat	Describes when the reversing valve output is energized
Alarm Enable	Structure	N/A	Allows the user to define the switch type

Commissioning

This screen displays settings related to commissioning the HPM1's outputs.

Setting	Range	Default	Description
Enable Commissioning	Off, On	Off	Enables / disables commissioning
Stage 1	Off, On	Off	Stage 1 override
Stage 2	Off, On	Off	Stage 2 override
Stage 3/TS/Cool Circ	Off, On	Off	Stage 3/TS/Cool Circ override
Load Circ/heat Circ	Off, On	Off	Load Circ override
Aux Heat	Off, On	Off	Aux Heat override
Rev Valve	Off, On	Off	Rev Valve override
Ground	Off, On	Off	Ground Circ override
Tank Circ	Off, On	Off	Tank Circ override
Mod Output	0% to 100%	0%	Percent of full scale to override output (during commissioning)

Tank Setpoints

This screen displays settings related to the system's buffer tanks' heating and cooling setpoints.

Setting	Range	Default	Description
Tank Heat Setpoint	60 to 190 °F (15.5 to 87.8 °C)		Temperature Setpoint of the Storage tank during heating
Tank Cool Setpoint	34 to 70 °F (21.1 to 5.56 °C)	40 °F (4.4 °C)	Temperature Setpoint of the Storage tank during cooling

OAT Reset Cool

This screen displays settings related to modifying the cooling buffer tank's setpoint based on outdoor air temperature.

Setting	Range	Default	Description
Reset Low	-20 to 122 °F (-28.9 to 50.0 °C)	-4.0 °F (-20.0 °C)	Low OAT for Cooling Tank Setpoint Reset Curve
Reset High	-20 to 50.0 °F (-28.9 to 48.9 °C)	-4.0 °F (-20.0 °C)	High OAT for Cooling Tank Setpoint Reset Curve
SP Low	34 to 70 °F (1.1 to 21.1 °C)	60 °F (15.6 °C)	Low Tank Setpoint for Cooling
SP High	34 to 70 °F (1.1 to 21.1 °C)	40 °F (4.44 °C)	High Tank Setpoint for Cooling

OAT Reset Heat

This screen displays settings related to modifying the heating buffer tank's setpoint based on outdoor air temperature.

Setting	Range	Default	Description
Reset Low	-20 to 122 °F (-28.9 to 50.0 °C)	-4.0 °F (-20.0 °C)	Low OAT for Heating Tank Setpoint Reset Curve
Reset High	-20 to 122 °F (-28.9 to 50.0 °C)	-4.0 °F (-20.0 °C)	High OAT for Heating Tank Setpoint Reset Curve
SP Low	60 to 190 °F (15.5 to 87.8 °C)	120 °F (48.9 °C)	Low Tank Setpoint for Heating
SP High	60 to 190 °F (15.5 to 87.8 °C)	100 °F (37.8 °C)	High Tank Setpoint for Heating

Staged Cooling / Heating

This screen displays settings related to the activation of heat pump stages during cooling or heating.

Setting	Range	Default	Description
Stages	0-3	2	Number of Stages controlled. Set to zero to disable staged cooling or heating.
Control Band	0 to 10.0 °F (0 to 5.55°C)	1.0 °F (0.55 °C)	Value used to modify the calculated setpoints to form the temperature range in which local cooling or heating is enabled.
Stage Time	0 to 255 minutes	5 minutes	The rate at which successive stages are sequenced.

Modulated Cooling / Heating

This screen displays settings related to the use of a modulated heat pump for cooling or heating.

Setting	Range	Default	Description
Кр	0.00 to 100.00 per °F	5.00%	Proportional gain of the P+I control loop
Ki	0.00 to 100.00%	0.05%	Integral gain of the P+I control loop
Min AO Voltage	0.0 to 10.0 Volts	0.0 Volts	Maximum output voltage for modulated cool- ing or heating
Max AO Voltage	0.0 to 10.0 Volts	0.0 Volts	Maximum output voltage for modulated cool- ing or heating. If set to 0, Modulation is dis- abled.

Supplemental Heat

This screen displays settings related to the operation of supplemental heating.

Setting	Range	Default	Description
Max Tank/Ground Diff	0 to 120 °F (0 to 66.7 °C)	80 °F (44.4 °C)	Temperature difference between the Storage tank and its current setpoint that will trigger supplemental heating or cooling. 0 disables.
Tank/Ground Diff DB	1 to 20 °F (0.55 to 11.1°C)	2 °F (1.11 °C)	Rise above Max tank/Source differential that will end supplemental heating

Setting	Range	Default	Description
Min Ground Temp	0 to 45 °F (-17.8 to 7.22 °C)	38 °F (3.33 °C)	Source Liquid temperature that will trigger supplemental heating
Min Ground Temp DB	1 to 20 °F (0.55 to 11.1°C)	2 °F (1.11 °C)	Temperature rise above the liquid min tem- perature to end supplemental heating
Max Tank SP Diff	0 to 50 °F (0.0 to 27.8°C)	20 °F (11.11 °C)	Difference between tank temperature and it's setpoint that will trigger supplemental heating.

Sensor Settings

This screen displays settings related to the type of senors used by the HPM1.

Setting	Range	Default	Description
Ground Temp Sensor	Precon III, Precon II, VTS	Precon III	Type of temperature sensor used to monitor Ground Source Liquid temperature
Tank Temp Sensor	Precon III, Precon II, VTS	Precon III	Type of temperature sensor used to monitor Storage Tank Liquid temperature
Watts Full Scale	0 to 65535 Watts'	100 W	Maximum power measured by the power transducer.

Changeover Settings

This screen displays settings related to the Changeover between heating and cooling modes in 2 Pipe 1 Tank systems.

Setting	Range	Default	Description
СО Туре	Auto, Heat Only, Cool Only	Auto	Whether to allow automatic mode transitions, or to lock unit into heating only or cooling only
Hours	0 to 255 hours	0 hours	See above (hours portion of the time inter- val).
Minutes	0 to 59 minutes	30 minutes	Minimum time between heating and cooling modes (minutes portion of the time interval)
Demand Type	Total Demand, Zone Maximum, Reference Zone, Digital Input	Total Demand	Describes which method to use to change- over

OAT Cutoffs

This screen displays settings related to overriding heat pump operation in response to outdoor air temperature.

Setting	Range	Default	Description
Heat Max OAT	-20 to 122 °F (-28.9 to 50.0 °C)	-4.0 °F (-20.0 °C)	Outside air temperature above which heating is disabled4 disables the cutoff.
Cool Max OAT	-20 to 122 °F (-28.9 to50.0 °C)	-4.0 °F (-20.0 °C)	Outside air temperature below which cooling is disabled4 disables the cutoff.

Alarm Settings

This screen displays settings related to response to alarm situations.

Setting	Range	Default	Description
Heat Emergency Temp	0.0 to 40.0 °F (-17.8 to 4.4 °C)	34 °F (1.11 °C)	Source temperature that will trigger emer- gency heating
Recover Temp	0.0 to 40.0 °F (-17.8 to 4.4 °C)	39.0 °F (3.89 °C)	Source temperature that allows for a recovery from emergency heating
Recovery Minutes	0 to 59 minutes	0 minutes	Period of time in which the HPM1 will try to recover from an emergency heating condi- tion. Note that if both minutes and hours are set to zero, a user reset is required to recover from this alarm.
Recovery Hours	0 to 255 hours	2 hours	See above (hours portion of the time inter- val).
Equip Status Delay	0 to 255 minutes	255 minutes	Period of time the HPM1 will wait before declaring an Equipment status delay interval alarm after Source demand for the Equip- ment Status input to go low. A value of 255 disables this alarm.

Runtime Limits

This screen displays settings related to runtime maintenance notifications for heat pump system components.

Setting	Range	Default	Description
Heat Pump	0 to 65535 hours	1,000 hours	Runtime limit for Heat Pump operation after which a maintenance alarm is generated
Load Circ	0 to 65535 hours	10,000 hours	Runtime limit for Load Circulator operation after which a maintenance alarm is gener- ated (Two Pipe Systems)
Heat Load Circ	0 to 65535 hours	10,000 hours	Runtime limit for Heat Load Circulator opera- tion after which a maintenance alarm is gen- erated (Four Pipe Systems)
Cool Load Circ	0 to 65535 hours	10,000 hours	Runtime limit for CoolLoop Circulator opera- tion after which a maintenance alarm is gen- erated (Four Pipe Systems)
Tank Circ	0 to 65535 hours	10,000 hours	Runtime limit for Tank Circulator operation after which a maintenance alarm is gener- ated

Alarm Enable

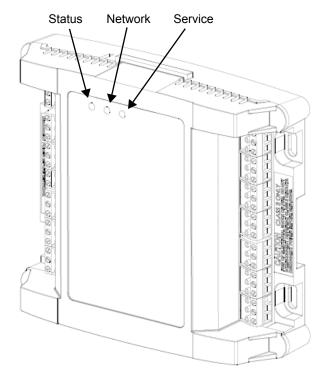
Allows the user to define the switch inputs as either Open or Closed or to disable alarming.

Setting	Range	Default	Description
Equip Status Polarity	Disabled, Normally Open, Normally Closed	Normally Open	Defines the type of switch and when to alarm.
Low Press Alm Polarity	Disabled, Normally Open, Normally Closed	Normally Closed	Defines the type of switch and when to alarm.
High Press Alm Polarity	Disabled, Normally Open, Normally Closed	Normally Closed	Defines the type of switch and when to alarm.

Alarms

The table below describes the alarms that the user may encounter and how to reset them.

Alarm	Range	Alarm Trigger	Alarm Reset
Plant Synchronization/Equip- ment Status	Normal, Alarm	An input is provided on the HPM1 for external emergencies or synchroniza- tion. If this input is not shorted to ground within <i>Plant Sync Delay Inter- val</i> minutes after the Heat Pump acti- vates, the HPM1 enters an alarm state. This feature is most commonly used as a 'pump proof' signal from the circula- tor providing the heat pump with water. If this input is not used it should be shorted (jumpered) to ground.	The cause of the emergency condition must be resolved.
Sensor Failure	Normal, Alarm	If the HPM1 measures an invalid volt- age (shorted to power or ground, for example) on any of its analog inputs, it sends this alarm to the LCI.	The HPM1 attempts to operate as nor- mal during this alarm.
Source Loop Liquid Tempera- ture	Normal, Alarm	This alarm is generated when the HPM1 enters Emergency Heating mode.	See the Emergency Heating section for more detail on behavior in this alarm.
Maintenance	Normal, Alarm	Occurs when the heat pump or circula- tor operating hours have exceeded their Runtime limit.	The HPM1 attempts to operate as nor- mal during this alarm.
Low Pressure	Normal, Alarm	This alarm is generated when the Low Pressure Alarm input is shorted to ground. During this alarm a 'low pres- sure alarm' message is sent to the LCI, the compressor is disabled, and the status LED turns red. Load circulators work as normal. There are two types of Low Pressure alarms: Soft and Hard. When the Low Pressure alarm condi- tion is first detected, it is designated a soft alarm.	During a soft alarm, the HPM1 attempts to return to normal operation if the Low Pressure Alarm input is no longer shorted to ground. If a subsequent Low Pressure alarm is detected after 120 minutes have elapsed since the previous alarm, the alarm is again designated a soft alarm. When a low pressure alarm recurs with 120 minutes, it is designated a hard alarm. The HPM1 requires a hard reset to clear a hard low pressure alarm.
High Pressure	Normal, Alarm	This alarm is generated when the High Pressure Alarm input is shorted to ground. During this alarm a 'high pres- sure alarm' message is sent to the LCI, the compressor is disabled, and the status LED turns red. Load circulators work as normal. There are two types of High Pressure alarms: Soft and Hard. When the High Pressure alarm condi- tion is first detected, it is designated a soft alarm.	During a soft alarm, the HPM1 attempts to return to normal operation if the Low Pressure Alarm input is no longer shorted to ground. If a subsequent High Pressure alarm is detected after 120 minutes have elapsed since the previous alarm, the alarm is again designated a soft alarm. When a High Pressure alarm recurs with 120 minutes, it is designated a hard alarm. The HPM1 requires a hard reset to clear a hard High Pressure alarm.


TROUBLESHOOTING

Diagnostic LEDs

The controller has 3 LED indicators. These indicators can aid in troubleshooting equipment operation problems. The following table lists the functions of the controller's LEDs in the order they appear from left to right on the unit.

LED	Indication
Status	 Solid green when running and configured by an LCI (networking) Flashing green when running and NOT configured by an LCI (stand-alone) Solid red when a fault condition exists (control shut down) Blinking Red - the controller has a device failure Solid Amber - The controller has not received a LCI ping message in over 10 minutes and is part of a network.
Network	 Yellow while the controller is transmitting data onto the FTT-10A network Green when there is network activity Off when there is no network activity
Service	 Illuminated when the service pin is depressed or when a controller gets configured by the LCI.

Figure 10: HPM1 Controller LEDs

Troubleshooting Tips

The table below provides solution to some common problems you may encounter.

Problem	Solution
Controller is not running and Status LED is not illuminated.	No power to controller. Verify the voltage on the controller's power connector (24 VAC).
How do I reset the controller?	The controller can be reset by the LCI, or you can cycle power to the controller. Refer to the LCI documentation for more information on resetting the controller using the LCI.
Can my iWorx® system contain multi- ple HPM1 controllers?	Yes, provided that you do not exceed the maximum number of controllers that can be handled by the Local Control Interface (LCI).
Readings fluctuate rapidly, some- times by several degrees.	The controller is not properly grounded. The controller's ground (GND) pin (T40) must be connected to earth ground.

Getting Help

Components within an iWorx® controller, sensor, or power supply cannot be field repaired. If there is a problem with a unit, follow the steps below before contacting your local TES representative or TES technical service.

1. Make sure controllers, sensors, and power supplies are connected and communicating.

2. Record precise hardware setup indicating the following:

Version numbers of application software.

Device and/or firmware version number.

A complete description of difficulties encountered.

Notes:

LIMITED WARRANTY STATEMENT

Taco Electronic Solutions, Inc. (TES) will repair or replace without charge (at the company's option) any product or part which is proven defective under normal use within one (1) year from the date of start-up or one (1) year and six (6) months from date of shipment (whichever occurs first).

In order to obtain service under this warranty, it is the responsibility of the purchaser to promptly notify the local TES stocking distributor or TES in writing and promptly deliver the subject product or part, delivery prepaid, to the stocking distributor. For assistance on warranty returns, the purchaser may either contact the local TES stocking distributor or TES. If the subject product or part contains no defect as covered in this warranty, the purchaser will be billed for parts and labor charges in effect at time of factory examination and repair.

Any TES product or part not installed or operated in conformity with TES instructions or which has been subject to accident, disaster, neglect, misuse, misapplication, inadequate operating environment, repair, attempted repair, modification or alteration, or other abuse, will not be covered by this warranty. TES products are not intended for use to support fire suppression systems, life support systems, critical care applications, commercial aviation, nuclear facilities or any other applications where product failure could lead to injury to person, loss of life, or catastrophic property damage and should not be sold for such purposes.

If in doubt as to whether a particular product is suitable for use with a TES product or part, or for any application restrictions, consult the applicable TES instruction sheets or in the U.S. contact TES at 401-942-8000 and in Canada contact Taco (Canada) Limited at 905-564-9422.

TES reserves the right to provide replacement products and parts which are substantially similar in design and functionally equivalent to the defective product or part. TES reserves the right to make changes in details of design, construction, or arrangement of materials of its products without notification.

TES OFFERS THIS WARRANTY IN LIEU OF ALL OTHER EXPRESS WARRANTIES. ANY WARRANTY IMPLIED BY LAW INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS IS IN EFFECT ONLY FOR THE DURATION OF THE EXPRESS WARRANTY SET FORTH IN THE FIRST PARAGRAPH ABOVE.

THE ABOVE WARRANTIES ARE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR STATUTORY, OR ANY OTHER WARRANTY OBLIGATION ON THE PART OF TES.

TES WILL NOT BE LIABLE FOR ANY SPE-CIAL, INCIDENTAL, INDIRECT OR CONSE-QUENTIAL DAMAGES RESULTING FROM THE USE OF ITS PRODUCTS OR ANY INCI-DENTAL COSTS OF REMOVING OR REPLACING DEFECTIVE PRODUCTS.

This warranty gives the purchaser specific rights, and the purchaser may have other rights which vary from state to state. Some states do not allow limitations on how long an implied warranty lasts or on the exclusion of incidental or consequential damages, so these limitations or exclusions may not apply to you.

CONTROLS MADE EASY®

Taco Electronic Solutions, Inc., 1160 Cranston Street, Cranston, RI 02920 Telephone: (401) 942-8000 FAX: (401) 942-2360.

Taco (Canada), Ltd., 8450 Lawson Road, Unit #3, Milton, Ontario L9T 0J8. Telephone: 905/564-9422. FAX: 905/564-9436.

Taco Electronic Solutions, Inc. is a subsidiary of Taco, Inc. Visit our web site at: http://www.taco-hvac.com